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Research Goals

m Unleash full power of modern computing
platforms

s Heterogeneous parallelism

= Make parallel application development
practical for the masses (Joe/Jane the
programmer)
= Parallelism is not for the average programmer

s Too difficult to find parallelism, to debug, and
get good performance

m Parallel applications without parallel
programming



Modern Big Data Analytics

m Predictive Analytics = Data Science

= Enable better decision making

s Data is only as useful as the decisions it
enables

m Deliver the capability to mine, search and
analyze this data in real time

s Requires the full power of modern computing
platforms
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Expert Parallel Programming
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MapReduce vs CUDA

= MapReduce: simplified data processing on
large clusters

J Dean, S Ghemawat
Communications of the ACM, 2008

Cited by 14764

= Scalable parallel programming with CUDA

J Nickolls, I Buck, M Garland, K Skadron
ACM Queue, 2008

Cited by 1205



Big-Data Analytics
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Domain Specific Languages

= Domain Specific Languages (DSLs)

= Programming language with restricted
expressiveness for a particular domain

s High-level, usually declarative, and deterministic

penGL MATLAB

]

SQL.




High Performance DSLs for Data
Analytics
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OptiML: Overview

m Provides a familiar (MATLAB-like) language and
API for writing ML applications

m Ex.val c = a * b (a, b are Matrix[Double])

m Implicitly parallel data structures
m Base types
Vector[T], Matrix[T], Graph[V,E], Stream[T]
s Subtypes
TrainingSet, IndexVector, Image, ...

m Implicitly parallel control structures
= sum{...}, (0::end) {...}, gradient { ... }, untilconverged { ... }

= Allow anonymous functions with restricted semantics to be
passed as arguments of the control structures



o o e 0
K-means Clustering in OptiM = %

closest mean

untilconverged(kMeans, tol){kMeans =>
val clusters = samples.groupRowsBy { sample =>
kMeans .mapRows(mean => dist(sample, mean)).minIndex

val newKmeans = clusters.map(e => e.sum calculate
newKmeans distances to
} current means

move each cluster centroid to the
mean of the points assigned to it

« No explicit map-reduce, no key-value pairs
« No distributed data structures (e.g. RDDs)

« No annotations for hardware design i
- Efficient multicore and GPU execution we
« Efficient cluster implementation L

. Efficient FPGA hardware o B




Hiag Performance DSLs for
Data Analytics with Delite
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Delite: A Framework for High
Performance DSLs

m Overall Approach: Generative Programming
for "Abstraction without regret”

= Embed compilers in Scala libraries
Scala does syntax and type checking

s Use metaprogramming with LMS (type-directed
staging) to build an intermediate representation
(IR) of the user program

s Optimize IR and map to multiple targets
m Goal: Make embedded DSL compilers easier

to develop than stand alone DSLs
m As easy as developing a library



K.J. Brown et.al,“A heterogeneous parallel
framework for domain-specific languages,” PACT, 201 I.
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Parallel Patterns: Delite Ops

m Parallel execution patterns

s Functional: Map, FlatMap, ZipWith, Reduce, Filter, GroupBy,
Sort, Join, union, intersection

= Non-functional: Foreach, ForeachReduce, Sequential
m Set of patterns can grow over time

m Provide high-level information about data access patterns
and parallelism

m DSL author maps each domain operation to the appropriate
pattern

s Delite handles parallel optimization, code generation, and
execution for all DSLs

m Delite provides implementations of these patterns for
multiple hardware targets

= High-level information creates straightforward and efficient
implementations

s Multi-core, GPU, clusters and FPGA



Parallel Patterns

Collections-\

Most data analytic o |/|| |

computations can

be expressed as m
parallel patterns on
collections (e.g. T T

~

Foreach

sets, arrays, table)

\_ Anonymous

|Funcﬁon

map inmap { e => e + 1 }
zipwith inA zipWith(inB) { (eA,eB) => eA + eB }
foreach inA foreach { e => if (e>0) inB(e) = true }
filter in filter { e => e > 0}
reduce in reduce { (el,e2) => el + e2 }
groupby in groupBy { e => e.id }

Other patterns: sort, intersection, union



Parallel Patterns are Universal DSL
Components

Parallel Patterns

OptiQL Map, Reduce, Filter, Sort, GroupBy,
(query processing) Intersection

OptiGraph Map, Reduce, Filter, GroupBy
(graph analytics)




Parallel Pattern Language (PPL)

m A data-parallel language that supports parallel patterns
m Example application: k-means

val clusters = samples groupBy { sample =>
val dists = kMeans map { mean =>
mean.zip(sample){ (a,b) => sq(a - b) } reduce { (a,b) => a + b }
}
Range(@, dists.length) reduce { (i,j) =>
if (dists(i) < dists(j)) i else j
}
}
val newKmeans = clusters map { e =>
val sum = e reduce { (vi,v2) => vl.zip(v2){ (a,b) => a + b } }
val count = e map { v => 1 } reduce { (a,b) => a + b }
sum map { a => a / count }

}




Key Aspects of Delite IR

m Sea of Nodes

= Data-flow graph

m EXxplicit effects encoded as data dependencies
m Parallel Patterns (Delite Ops)

s Sequential, Map, Reduce, Zip, Foreach, Filter, GroupBy, Sort,
ForeachReduce, FlatMap

m Skeletons that DSL authors extend
m Data Structures also in IR
m Structs with restricted fields (scalars, arrays, structs)

m Field access and struct instantiation is explicit and constructs
IR nodes

= Multiple Views
m Generic, Parallel, Domain-Specific
s Can optimize at any level



Mapping Nested Parallel Patterns to
GPUs

m Parallel patterns are often nested in applications

= > 70% apps in Rodinia benchmark contain kernels with
nested parallelism

m Efficiently mapping parallel patterns on GPUs
becomes significantly more challenging when
patterns are nested
= Memory coalescing, divergence, dynamic allocations, ...
s Large space of possible mappings



Mapping Nested Ops to GPUs

Matrix.rand(nR,nC) » map (i)

« m = Matrix.rand(nR,nC)

m.sumCols reduce(j) V = m.sumRows
B 1D M thread-block/thread warp-based ™ MultiDim
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HyoukJoong Lee et. al,“Locality-Aware Mapping of
Nested Parallel Patterns on GPUs,” MICRO'l 4
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Nested Delite Ops on Rodinia Apps
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m 2D mapping exposes more parallelism
m 2D mapping enables coalesced memory accesses



Heterogeneous Cluster Performance
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4 node local cluster: 3.4 GB dataset



MSM Builder Using OptiML
with Vijay Pande

Markov State Models
(MSMs)

,%E: MSMs are a powerful means
‘%;\:‘ of modeling the structure

and dynamics of molecular
systems, like proteins

MSMbuilder Kinetic Clustering high prod, high perf ]

OptiML
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High Performance Data
Analytics with Delite

T Data Graph Prediction

Domain Data Machine
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FPGAs in the Datacenter?

s FPGAs based accelerators
s Recent commercial interest from Baidu, Microsoft, and Intel
s Key advantage: Performance, Performance/Watt
s Key disadvantage: lousy programming model

= Verilog and VHDL poor match for software
developers
= High quality designs

= High level synthesis (HLS) tools with C interface
= Medium/low quality designs
= Need architectural knowledge to build good accelerators

= Not enough information in compiler IR to perform access
pattern and data layout optimizations

s Cannot synthesize complex data paths with nested
parallelism



Hardware Design with HLS is Easy

Sum

Module DRAM

Add 512 integers stored in external DRAM

(int* mem){
mem[512] = O;
for(int i=0; i<512; i++){
mem[512] += mem[i];
}
27,236 clock cycles for computation

Two-orders of magnitude too long!



High Quality Hardware Design with
HLS is Still Difficult

#define ChunkSize (sizeof(MPort)/sizeof(int))
#define LoopCount (512/ChunkSize)

void(MPort* mem){ Width of the DRAM controller interface

MPort buff[LoopCount];
memcpy (buff, mem, LoopCount); Burst access

int sum=0; Use local variable
for(int i=1; i<LoopCount; i++){
#pragma PIPELINE Special compiler directives
for(int j=0; j<ChunkSize; j++){
#pragma UNROLL
sum+=(int) (buff[i]>>j*sizeof(int)*8);
}

} Reformat code
mem[ 512 ]=sum;

302 clock cycles for computation



Make HLS Easier with Delite

Nithin George et. al.““Hardware system synthesis
from Domain-Specific Languages,” FPL 2014

m Delite generates HLS code for each parallel
pattern in the application
s Currently targets Xilinx Vivado HLS
s Optimizations for burst DRAM access

// data 1s an array of 512 elements that has been declared and initialized.

val result = data.sum
Reduce '

Clock and
Control
Circuit

DRAM
Controller

6_
4—1‘ DRAM

368 clock cycles for computation



Optimized Approach to HW Generation

m Key optimizations:

.y Pattern
= Parallel pattern tiling to Transformations
maximize on-chip data reuse et
Code Motion

s Metapipelines to exploit nested ——— = ——
paralieism
IR

Hardware Generation
m Generate MaxJ code T et
s Use Maxeler's MaxCompiler to w
generate FPGA bitstream
( MaxJ HGL )

Bitstream Generation

( FPGA Configuration )




Generalized Parallel Pattern
Language (GPPL)

m Enable use of general pattern matching rules for
automatic tiling

s Polyhedral modeling limits array accesses to affine functions
of loop indices

s Pattern matching rules can be run on any input program,
even those with random and data-dependent accesses

Pattern Description Application Usage Example
Y Generates one element per loop index, x.map{e => 2*e}
S | Map aggregates result into fixed size output x.zip(y){(a,b) => a + b}
; collection
.Q. MultiFold Reduces one partial result per loop index into | mat .map{row =>
z a subsection of a fixed size accumulator row.fold{ (a,b) => a + b}}
Y Concatenates arbitrary number of elements data.filter{e => e > 0}
£ | FlatMap . . . :
= per loop index into dynamic output collection
7]
= Reduces arbitrary number of partial results img.histogram
bT GroupByFold | per loop index into buckets based on
- generated keys




PPL Fusion of k-means

Fusion creates
MultiFold

L

“val clusters = samples groupéy { sample =>

/ val dists

kMeans map { mean =>

N

mean.zip(sample){ (a,b) => sq(a - b) } reduce { (a,b) => a + b }

}

\J

Range(0®, dists.length) reduce { (i,j) =>
if (dists(i) < dists(j)) i else j

J

}

val newKmeans

= clusters map { e =>

/

val sum = e reduce { (vl,v2) => vl.zip(v2){ (a,b) => a + b } }
. val count = e map { v => 1 } reduce { (a,b) => a +b }
sum map { a => a / count }

}




Core of k-means using GPPL

sums = multiFold(n) {i =>
ptl = points.slice (i, *)

minDistWithIndex = multiFold(k) {j =>

pt2 = centroids.slice(]j, *)
dist = distance(ptl, pt2)
(0, (dist, 3j))

}{(a,b) => if (a. 1 < b. 1) a else b }
minIndex = minDistWithIndex._2

(minIndex, ptl)
}H(a,b) => map(d) {k => a(k) + b(k) }

For each point in a set of n points

Get point ptl from points set
For each centroid in set of k centroids
Get centroid pt2 from centroids set

Calculate distance between point
& centroid

Take closer of current (distance, index)
palir & previously found closest
(distance, index)

Extract index of closest centroid
At index of closest centroid,

add point (with dimension d) to
accumulator (non-affine access)



Parallel Pattern Tiling 1

m Strip mining: Chunk parallel patterns into nested
patterns of known size, chunk predictable array accesses

with copies

m Copy becomes local memory with hardware prefetching
s Strip mined patterns enable computation reordering

Example

Parallel Patterns

Strip Mined Patterns

Simple Map
x: Array, size d
x.map{e => 2*e}

map (d) {1 => 2*x

(1)}

multiFold (d/b) {ii =>
xTile = x.copy(b + 1i1i)
(1, map(b) {1 => 2*xTile (i) }) 1}

Sum through matrix rows
mat: Matrix, size m X n
mat.map{row =>

row.fold{ (a,b) => a + b}}

multiFold(m,n) {i,j =
)

(i, mat (i, ]

rJ)
}{(a,b) => a + b}

>

multiFold (m/b0,n/bl) {ii,j] =>
matTile = mat.copy (b0+ii,bl+j7)
(ii, multiFold (b0O,bl) {i,] =>
(i, matTile(i,7))
tH{(a,b) => a + b})
}{(a,b) => a + b}

Simple data filter
data: Array, size d
data.filter{e => e > 0}

flatMap (d/b) {ii =>
xTile = x.copy(b + 1i1)
flatMap (b) {1 =>
if (xTile (1)
else []

> 0) xTile (1)

M}




Parallel Pattern Tiling 2

= Pattern interchange: Reorder nested patterns and
split imperfectly nested patterns when intermediate
data created is statically known to fit on chip

s Reordering improves locality and reuse of on-chip memory
s Reduces number of main memory reads and writes

Example

Strip Mined Patterns

Interchanged Patterns

Matrix multiplication
x: Matrix, size m X p
y: Matrix, size p x n
x.mapRows{row =>
y.mapCols{col =>
row.zip(col) { (a,b)=>
a*b
}.sum

1}

multiFold (m/b0,n/bl) {ii,jj =>
xT1l = x.copy (b0+ii, bl+j7)
((ii,33), map(b0,bl) {i,7 =>
multiFold (p/b2) {kk =>
‘ yT1l dy.copy (bl+jj, b2+kk)
(0, multiFold(b2){ k =>
(0, xT1(i,3)* yT1l(j,k))
}(a,b) => a + b})
t(a,b) => a + b}
)
}

multiFold (m/b0,n/bl) {ii,j] =>
xTl = x.copy (b0O+11, bl+jj)
((ii,j3), multiFold (p/b2) {kk =>
yTl = y.copy (bl+jj, b2+kk)
(0, map(bO,bl){i,j =>
(0, multiFold (b2){ k =>
(0, xT1(1,3)* yTl(3,k))
t{(a,b) =>a + b})
)
H(a,b) =>
map (b0,bl) {i,7 =>
a(i,j) + b(i,3) }
})
}




Hardware (MaxJ code) Generation

m Parallel patterns mapped to library of hardware
templates

m Each template exploits one or more kinds of
parallelism or memory access pattern

m Templates coded in MaxJ: Java based hardware
generation language from Maxeler



Hardware Templates
| Pipe. Exec. Units | Descripton | IRConstruct

Vector SIMD parallelism Map over scalars

Reduction tree Parallel reduction of associative operations  MultiFold over scalars

Parallel FIFO Buffer ordered outputs of dynamic size FlatMap over scalars

CAM Fully associative key-value store GroupByFold over scalars
 Memories | Descripton | IRConstruct _

Buffer Scratchpad memory Statically sized array

Double buffer Buffer coupling two stages in a metapipeline Metapipeline

Cache Tagged memory exploits locality in random accesses Non-affine accesses
| Controllers | Description | IRConmstruct

Sequential Coordinates sequential execution Sequential IR node

Parallel Coordinates parallel execution Independent IR nodes

Metapipeline Execute nested parallel patterns in a Outer parallel pattern with

pipelined fashion multiple inner patterns

Tile memory Fetch tiles of data from off-chip memory Transformer-inserted array copy



Metapipelining

m Hierarchical pipeline: “pipeline of pipelines”
s Exploits nested parallelism

m Stages could be other nested patterns or
combinational logic

s Does not require iteration space to be known
statically

s Does not require complete unrolling of inner
patterns

= Intermediate data from each stage stored in
double buffers
s No need for lockstep execution



Metapipeline — Simple Example

r=2

map(N) { r =>

row = matrix.slice(r)

diff = map(D) { i =>
row(i) - sub(i)

¥

vprod«= map(D,®) {(i,])=>

diff(i) * diff(j)
}

vprod

TileMemController
Pipel
—

row sub
s I

vprod
v

» TileMemController

Pipe4

Pipe3

r=3

TileMemController

Pipel

vprod

vprod
—

TileMemController

Pipe4

Metapipeline — 4 stages



Generated k-means Hardware

points
Double buffer sum
Buffer
. points
P‘;’{"S Double buffer R
e +
Double buffer
Load
centroids :
< _ minldx Pipe 3 — Sum
Pipe 1 Double buffer ce”:;:‘_ds
B Tile
centroids Store
Tile L, Vector Scalar . Pipe 4 — Count .
Load Dist — Dist — Dig,mll:lx) Pipe 5 — Avg. Pipe 6
(Norm) (Tree +) e
: count
Pipe 0 Pipe 2 — MinDistWithindex Calculation Buffer
Metapipeline B (Pipe 5-6) —
Metapipeline A (Pipe 1-4) — assign points to clusters and sum points

average points
= High quality hardware design
s Hardware similar to Hussain et al. Adapt. HW & Syst. 2011
“"FPGA implementation of k-means algorithm for bioinformatics application”
Implements a fixed number of clusters and a small input dataset

s Tiling analysis automatically generates buffers and tile load units to
handle arbitrarily sized data

m Parallelizes across centroids and vectorizes the point distance
calculations



Impact of Tiling and Metapipelining

e e
o s E— ) |
e L L | T T [ T T [ T T [ 1 T [ T T
I +iling B +iling+metapipelining

m Base design uses burst access

m Speedup with tiling alone: up to 15.5x

m Speedup with tiling and metapipelining: up to 39.4x

m= Minimal (often negative!) impact on resource usage

s Tiled designs have fewer off-chip data loaders and storers



Summary

m In the age of heterogeneous architectures

s Power limited computing = parallelism and accelerators

m Need parallelism and acceleration for the masses
m DSLs let programmers operate at high-levels of abstraction
= Need one DSL for all architectures
s Semantic information enables compiler to do coarse-grained domain-
specific optimization and translation
m Need a parallelism and accelerator friendly IR
Parallel pattern IR structures computation and data
Allows aggressive parallelism and locality optimizations through

transformations
Provides efficient mapping to heterogeneous architectures

m DSL tools for FPGAs need to be improved
m Better performance prediction

m More optimization
m Shorter compile times (place and route)



Big Data Analytics
In the Age of Accelerators

—

m Power Accelerators
__ (GPU, FPGA, ..)

m Performance ]
— Parallel] Patterns

= Productivity — High Performance DSLs
(OptiML, OptiqQL, ...)

m Portability
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comparing Programming models ot
Recent Systems For Data
ANALYTICs

Programming Model Features Supported Hardware
Rich Data Nested Nested Multiple Random| Multi-
System Parallelism Prog. Parallelism Collections Reads | core NUMA Clusters GPU FPGA
MapReduce v
DryadLINQ v v v
Thrust v v
Scala
Collections v v v e v v
Delite v v v v v v v v v v
Spark v v v
Lime v v v v v v v
PowerGraph v v v
Dandelion v v v v v
Frameworks are listed in chronological order

Requirement: expressive programing model and

support tfor all platforms




Distributed Heterogeneous
Execution

m Separate Memory
Reg lons DSL Application

= NUMA { g

s Clusters Delite parallel data Delite -
[ ] FPGAS parallel
patterns

m Pa rtitioning Ana|y5iS Partitioning & Stencil Analysis
s Multidimensional arrays

n DeCide Wh|Ch data partitioned data local data scheduled -
structures / parallel ops patterns

to partition across
abstract memory regions

Nested Pattern Transformations

H Nested Patte rn partitioned data local data scheduled, -
Transformations e,
= Optimize patterns for
distributed and Heterogeneous Code Generation & Distributed Runtime

heterogeneous
architectures

1 )




OptiML on Heterogeneous Cluster
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4 node local cluster: 3.4 GB dataset




Multi-socket NUMA Performance
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Parallel Pattern Language

= Implemented a data-parallel language that supports parallel

patterns

m Structured computations and data structures
s Computations : map, zipwith, foreach, filter, reduce, groupby, ...

m Data structures: scalars, array, structs

= Example application: PageRank

Graph.nodes map { n =>

nbrsWeights = n.nbrs map { w =>
getPrevPageRank(w) / w.degree

}

sumWeights = nbrsWeights reduce { (a,b) => a + b }
((1 - damp) / numNodes + damp * sumWeights

2

PageRank



